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Figure 5.4: Risk management activities.

The goal of risk assessment is to prioritize the risks so that attention and resources
can be focused on the more risky items. Risk identification is the first step in risk
assessment, which identifies all the different risks for a particular project. These risks are
project-dependent and identifying them is an exercise in envisioning what can go wrong.
Methods that can aid risk identification include checklists of possible risks, surveys,
meetings and brainstorming, and reviews of plans, processes, and work products [78].

Checklists of frequently occurring risks are probably the most common tool for
risk identification—most organizations prepare a list of commonly occurring risks for
projects, prepared from a survey of previous projects. Such a list can form the starting
point for identifying risks for the current project.

Based on surveys of experienced project managers, Boehm [19] has produced a list
of the top 10 risk items likely to compromise the success of a software project. Though
risks in a project are specific to the project, this list forms a good starting point for
identifying such risks. Figure 5.5 shows these top 10 items along with the techniques
preferred by management for managing these risks. Top risks in a commercial software
organization can be found in [97].

The top-ranked risk item is personnel shortfalls. This involves just having fewer
people than necessary or not having people with specific skills that a project might
require. Some of the ways to manage this risk is to get the top talent possible and
to match the needs of the project with the skills of the available personnel. Adequate
training, along with having some key personnel for critical areas of the project, will also
reduce this risk.

The second item, unrealistic schedules and budgets, happens very frequently due to
business and other reasons. It is very common that high-level management imposes a
schedule for a software project that is not based on the characteristics of the project
and is unrealistic. Underestimation may also happen due to inexperience or optimism.
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RISK ITEM

RISK MANAGEMENT TECHNIQUES

10

Personnel Shortfalls

Unrealistic
and Budgets

Schedules

Developing the Wrong
Software Functions

Developing the Wrong

. User Interface

Gold Plating

Continuing Stream of
Requirement Changes

Shortfails in Externally
Furnished Components

Shortfalls in Externally
Performed Tasks

"Real Time Performance

Shortfalls

Straining Computer Sci-
ence Capabilities

Staffing with top talent; Job matching; Team
building; Key personnel agreements; training;
Prescheduling key people

Detailed multi source cost and schedule estima-
tion; Design to cost; Incremental Development;
Software reuse; Requirements scrubbing

Organization analysis; Machine analysis; Ops
concept forumlation; User surveys; Prototyping;
Early user’s manuals

Prototyping; Scenarios; Task analysis; User char-
acterization

Requirements scrubbing; Prototyping; Cost ben-
efit analysis; Design to cost

High change threshold; Information hiding; Incre-
mental development .

Benchmarking inspections; Reference checking;
Compatibility analysis

Reference checking; Preaward audits; Award free
contracts; Competetive design or prototyping;
Team building

Simulation; Benchmarking; Modeling; Prototyp-
ing; Instrumentation; Tuning

Technical analysis; Cost benefit analysis; Proto-
typing; Reference checking

Figure 5.5: Top 10 risk items and techniemes for managing thiem,
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The next few items are related to requirements. Projects run the risk of developing
the wrong software if the requirements analysis is not done properly and if development
begins too early. Similarly, often improper user interface may be developed. This
requires extensive rework of the user interface later or the software benefits are not
obtained because users are reluctant to use it. Gold plating refers to adding features in
the software that are only marginally useful. This adds unnecessary risk to the project
because gold plating consumes resources and time with little return. Some requirement
changes are to be expected in any project, but sometimes frequent changes are requested,
which is ofterr a reflection of the fact that the client has not yet understood or settled
on its own requirements. The effect of requirement changes is substantial in terms of
cost, especially if the changes occur when the project has progressed to later phases.
Performance shortfalls are critical in real-time systems and poor performance can mean
the failure of the project.

If a project depends on externally available components—either to be provided by
the client or to be procured as an off-the-shelf component—the project runs some risks.
The project might be delayed if the external component is not available on time. The
project would also suffer if the quality of the external component is poor or if the
component turns out to be incompatible with the other project components or with the
environment in which the software is developed or is to operate. If a project relies on
technology that is not well developed, it may fail. This is a risk due to straining the
computer science capabilities.

Using the checklist of the top 10 risk items is one way to identify risks. This ap-
proach is likely to suffice in many projects. The other methods are decision driver
analysis, assumption analysis, and decomposition [19]. Decision driver analysis involves
questioning and analyzing all the major decisions taken for the project. If a decision has
been driven by factors other than technical and management reasons, it is likely to be
a source of risk in the project. Such decisions may be driven by politics, marketing, or
the desire for short-term gain. Optimistic assumptions made about the project also are
a source of risk. Some such optimistic assumptions are that nothing will go wrong in
the project, no personnel will quit during the project, people will put in extra hours if
required, and all external components (hardware or software) will be delivered on time.
Identifying such assumptions will point out the source of risks. An effective method for
identifying these hidden assumptions is comparing them with past experience. Decom-
position implies breaking a large project into clearly defined parts and then analyzing
them. Many software systems have the phenomenon that 20% of the modules cause
80% of the project problems. Decomposition will help identify these modules.

Risk identification merely identifies the undesirable events that might take place
during the project, i.e., enumerates the “unforeseen” events that might occur. It does
not specify the probabilities of these risks materializing nor the impact on the project if
the risks indeed materialize. Hence the next tasks are risk analysis and prioritization.
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In risk analysis, the probability of occurrence of a risk has to be estimated, along
with the loss that will occur if the risk does materialize. This is often done through
discussion, using experience and understanding of the situation. However, if cost models
are used for cost and schedule estimation, then the same models can be used to assess
the cost and schedule risk. For example, in the COCOMO cost model, the cost estimate
depends on the ratings of the different cost drivers. One possible source of cost risk is
underestimating these cost drivers. The other is underestimating the size. Risk analysis
can be done by estimating the worst-case value of size and all the cost drivers and then
estimating the project cost from these values. This will give us the worst=case analysis.
Using the worst-case effort estimate, the worst-case schedule can easily be obtained. A
more detailed analysis can be done by considering different cases or a distribution of
these drivers.

The other approaches for risk analysis include studying the probability and the
outcome of possible decisions (decision analysis), understanding the task dependencies
to decide critical activities and the probability and cost of their not being completed on
time (network analysis), risks on the various quality factors like reliability and usability
(quality factor analysis), and evaluating the performance early through simulation, etc.,
if there are strong performance constraints on the system (performance analysis). The
reader is referred to [19] for further discussion of these topics.

Once the probabilities of risks materializing and losses due to materialization of dif-
ferent risks have been analyzed, they can be prioritized. One approach for prioritization
is through the concept of risk ezposure (RE) [19], which is sometimes called risk impact.
RE is defined by the relationship

RE = ProbtU ()« Loss(170)5.

where Prob(UQ) is the probability of the risk materializing (i.e., undesirable outcome)
and Loss(UQ) is the total loss incurred due to the unsatisfactory outcome. The loss is
not only the direct financial loss that might be incurred but also any loss in terms of
credibility, future business, and loss of property or life. The RE is the expected value
of the loss due to a particular risk. For risk prioritization using RE, the higher the RE,
the higher the priority of the risk item.

It is not always possible to use models and prototypes to assess the probabilities
of occurrence and of loss associated with particular events. Due to the nonavailability
of models, assessing risk probabilities is frequently subjective. A subjective assessment
can be done by the estimate of one person or by using a group consensus technique
like the Delphi approach [20]. In the Delphi method, a group of people discusses the
problem of estimation and finally converges on a consensus estimate.

5.6.3 Risk Control

The main objective of risk management is to identify the top few risk items and then
focus on them. Once a project manager has identified and prioritized the risks, the
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top risks can be easily identified. The question then becomes what to do about them.
Knowing the risks is of value only if you can prepare a plan so that their consequences
are minimal—that is the basic goal of risk management.

One obvious strategy is risk avoidance, which entails taking actions that will avoid
the risk altogether, like the earlier example of shifting the building site to a zone that
is not earthquake-prone. For some risks, avoidance might be possible.

For most risks, the strategy is to perform the actions that will either reduce the
probability of the risk materializing or reduce the loss due to the risk materializing.
These are called risk mitigation steps. To decide what mitigation steps to take, a list
of commonly used risk mitigation steps for various risks is very useful here. Generally
the compiled table of commonly occurring risks also contains the compilation of the
methods used for mitigation in the projects in which the risks appeared.

Note that unlike risk assessment, which is largely an analytical exercise, risk mit-
igation comprises active measures that have to be performed to minimize the impact
of risks. In other words, selecting a risk mitigation step is not just an intellectual ex-
ercise. The risk mitigation step must be executed (and monitored). To ensure that
the needed actions are executed properly, they must be incorporated into the detailed
project schedule.

Risk prioritization and consequent planning are based on the risk perception at the
time the risk analysis is performed. Because risks are probabilistic events that frequently
depend on external factors, the threat due to risks may change with time as factors
change. Clearly, then, the risk perception may also change with time. Furthermore, the
risk mitigation steps undertaken may affect the risk perception.

This dynamism implies that risks in a project should not be treated as static and
must be monitored and reevaluated periodically. Hence, in addition to monitoring the
progress of the planned risk mitigation steps, a project must periodically revisit the
risk perception and modify the risk mitigation plans, if needed. Risk monitoring is the
activity of monitoring the status of various risks and their control activities. One simple
approach for risk monitoring is to analyze the risks afresh at each major milestone, and
change the plans as needed.

5.6.4 A Practical Risk Management Approach

Though the concept of risk exposure is rich, a simple practical way of doing risk plan-
ning is to simply categorize risks and the impacts in a few levels and then use it for
prioritization. This approach is used in many organizations. Here we discuss a simple
approach used in an organization [97]. In this approach, the probability of a risk oc-
curring is categorized as low, medium, or high. The risk impact can be also classified
as low, medium, and high. With these ratings, the following simple method for risk
prioritization can be specified:

1. For each risk, rate the probability of tts happoumng as iow, medin, or bigh.
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2. For each risk. assess its impact on the project as low. medium. or high.

3. Rank the risks based on the probability and effects on the project; for example, a
high-probability, high-impact item will have higher rank than a risk item with a
medium probability and high impact. In case of conflict, use judgment.

4. Sclect the top few risk items for mitigation and tracking.

An example of this approach is given in Table 5.5, which shows the various ratings
and the risk mitigation steps [97].

Seq Risk Prob. Impact Exp. Mitigation

Num Plan

1 Failure to High High High Study white papers and
meet the high guidelines on perf.
performance Train team on perf. tuning.

Update review checklist to
look for perf. pitfalls.
Test application for perf.
during system testing.

2 Lack of peo- Med Med Med Train resources.
ple with right Review prototype with cus-
skills tomer.

Develop coding practices.

3 Complexity of Med Med Med Ensure ongoing knowledge
application transfer.

Deploy persons with prior

experience with the domain.

4 Manpower at- Med Med Med Train a core group of four
trition people.
Rotate assignments among
people.
Identify backups for key
roles.
5 Unclear re- Med Med Med Review a prototype.
quirements Conduct a midstage review.

Table 5.5: Risk management plan for a project.

As we can see, the risk management part of the project management plan, which is
essentially this table, can be very brief and focused. For monitoring the risks, one way
is to redo risk management planning at milestones, giving more attention to the risks
listed in the project plan. During risk monitoring at milestones, reprioritization may
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occur and mitigation plans for the remainder of the project may change, depending on
the current situation and the impact of mitigation steps taken earlier.

5.7 Project Monitoring Plan

A project management plan is merely a document that can be used to guide the ex-
ecution of a project. Even a good plan is useless unless it is properly executed. And
execution cannot be properly driven by the plan unless it is monitored carefully and the
actual performance is tracked against the plan.

Monitoring requires measurements to be made to assess the situation of a project. If
measurements are to be taken during project execution, we must plan carefully regarding
what to measure, when to measure, and how to measure. Hence, measurement planning
is a key element in project planning. In addition, how the measurement data will
be analyzed and reported must also be planned in advance to avoid the situation of
collecting data but not knowing what to do with it. Without careful planning for data
collection and its analysis, neither is likely to happen. In this section we discuss the
issues of measurements and project tracking.

5.7.1  MNeasurements

The basic purpose of measurements in a project is to effectively monitor and control
the project. For monitoring a project schedule, size, effort, and defects are the basic
measurements that are needed (76, 134]|. Schedule is one of the most important metrics
because most projects are driven by schedules and deadlines. Only by monitoring the
actual schedule can we properly assess if the project is on time or if there is a delay. It
is, however, easy to measure because calendar time is usually used in all plans.

Effort is the main resource consumed in a software project. Consequently, tracking
of effort is a key activity during monitoring; it is essential for evaluating whether the
project is executing within budget. For effort data some type of timesheet system is
needed where each person working on the project enters the amount of time spent on
the project. For better monitoring, the effort spent on various tasks should be logged
separately. Generally effort is recorded through some online system (like the weekly
activity report system in [96]), which allows a person to record the amount of time spent
on a particular activity. At any point, total effort on an activity can be aggregated.

Because defects have a direct relationship to software quality, tracking of defects is
critical for ensuring quality. A large software project may include thousands of defects
that are found by different people at different stages. Just to keep track of the defects
found and their status, defects must be logged and their closure tracked. Once each
defect found is logged (and later closed), analysis can focus on how many defects have
been found so far, what percentage of defects are still open, and other issues. Defect
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tracking is considered one of the best practices for managing a project [26]. We will
discuss it in Chapter 10.

Size is another fundamental metric because many data (for example, delivered
defect density) are normalized with respect to size. The size of delivered software can
be measured in terms of LOC (which can be determined through the use of regular
editors and line counters) or function points. At a more gross level, just the number of
modules or number of features might suffice.

5.7.2 Project Monitoring and Tracking

The main goal of monitoring is for project managers to get visibility into the project
execution so that they can determine whether any action needs to be taken to ensure
that the project goals are met. Different types of monitoring might be done for a project.
The three main levels of monitoring are activity level, status reporting, and milestone
analysis. Measurements taken on the project are employed for monitoring.

Activity-level monitoring ensures that each activity in the detailed schedule has been
done properly and within time. This type of monitoring may be done daily in project
team meetings or by the project manager checking the status of all the tasks scheduled
to be completed on that day. A completed task is often marked as 100% complete in
detailed schedule—this is used by tools like the Microsoft Project to track the percentage
completion of the overall project or a higher level task.

Status reports are often prepared weekly to to take stock of what has happened and
what needs to be done. Status reports typically contain a summary of the activities
successfully completed since the last status report, any activities that have been delayed,
any issues in the project that need attention, and if everything is in place for the next
week.

The milestone analysis is done at each milestone or every few weeks, if milestones
are too far apart. Analysis of actual versus estimated for effort and schedule is often
included in the milestone analysis. If the deviation is significant, it may imply that the
project may run into trouble and might not meet its objectives. This situation calls for
project managers to understand the reasons for the variation and to apply corrective
and preventive actions if necessary.

A graphical method of capturing the basic progress of a project as compared to its
plans is the cost-schedule-milestone [20] graph. The graph shows the planned schedule
and cost of different milestones, along with shows the actual cost and schedule of achiev-
ing the milestones achieved so far. By having both the planned cost versus milestones
and the actual cost versus milestones on the same graph, the progress of the project
can be grasped easily.

The x-axis of this graph is time, where the months in the project schedule are
marked. The y-axis represents the cost, in dollars or PMs. Two curves are drawn. One
curve is the planned cost and planned schedule, in which each important milestone of
the project is marked. This curve can be completed after the project plan is made. The
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second curve represents the actual cost and actual schedule, and the actual achievement
of the milestones is marked. Thus, for each milestone the point representing the time
when the milestone is actually achieved and the actual cost of achieving it are marked.
A cost-schedule-milestone graph for the example is shown in Figure 5.6.
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Figure 5.6: A cost-schedule-milestone graph.

The chart shown in Figure 5.6 is for a hypothetical project whose cost is estimated
to be $100K. Different milestones have been identified and a curve is drawn with these
milestones. The milestones in this project are PDR (preliminary design review), CDR
(critical design review), Module 1 completion, Module 2 completion, integration testing,
and acceptance testing. For each of these milestones some budget has been allocated
based on the estimates. The planned budget is shown by a dotted line. The actual
expenditure is shown with a bold line. This chart shows that only two milestones have
been achieved, PDR and CDR, and though the project was within budget when PDR
was complete, it is now slightly over budget.
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5.8 Summary

A proper project plan is an important ingredient for a successful project. Without
proper planning, a software development project is unlikely to succeed. Good plan-
ning can be done after the requirements and architecture for the project are available.
The important planning activities are: process planning, effort estimation, scheduling
and staffing planning, quality planning, configuration management planning, project
monitoring planning, and risk management.

Process planning generally involves selecting a proper process model and tailoring it
to suit the project needs. In effort estimation overall effort requirement for the project
and the breakup of the effort for different phases is estimated. In a top-down approach,
total effort is first estimated, frequently from the estimate of the size, and then effort for
different phases or tasks is determined. In a bottom-up approach, the main tasks in the
project are identified, and effort for them is estimated first. From the effort estimates
of the tasks, the overall estimate is obtained.

The overall schedule and the major milestones of a project depend on the effort
estimate and the staffing level in the project and simple models can be used to get a
rough estimate of schedule from effort. Often, an overall schedule is determined using
a model, and then adjusted to meet the project needs and constraints. The detailed
schedule is one in which the tasks are broken into smaller, schedulable tasks, and then
assigned to specific team members, while preserving the overall schedule and effort
estimates. The detailed schedule is the most live document of project planning as it
lists the tasks that have to be done; any changes in the project plan must be reflected
suitably in the detailed schedule.

Quality plans are important for ensuring that the final product is of high quality.
The project quality plan identifies all the V&V activities that have to be performed at
different stages in the development, and how they are to be performed.

The goal of configuration management is to control the changes that take place
during the project. The configuration management plan identifies the configuration
items which will be controlled, and specifies the procedures to accomplish this and how
access is to be controlled.

Risks are those events which may or may not occur, but if they do occur, they
have a negative impact on the project. To meet project goals even under the presence
of risks requires proper risk management. Risk management requires that risks be
identified, analyzed, and prioritized. Then risk mitigation plans are made and performed
to minimize the effect of the highest priority risks.

For a plan to be successfully implemented it is essential that the project be mon-
itored carefully. Activity level monitoring, status reports, and milestone analysis are
the mechanisms that are often used. For analysis and reports, the actual effort, schedule,
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defects, and size should be measured. With these measurements, it is possible to monitor
the performance of a project with respect to its plan. And based on this monitoring,
actions can be taken to correct the course of execution, if the need arises.

Overall, project planning lays out the path the project should follow in order to
achieve the project objectives. It specifies all the tasks that the project members should
perform, and specifies who will do what, in how much time, and when in order to execute
this plan. With a detailed plan, what remains to be done is to execute the plan, which
is done through the rest of the project. Of course, plans never remain unchanged, as
things do not always work as planned. With proper monitoring in place, these situations
can be identified and plans changed accordingly. Basic project planning principles and
techniques can be used for plan modification also.

Exercises

1. Suppose that the requirements specification phase is divided into two parts: the initial
requirements and feasibility study and the detailed requirements specification. Suppose
that first part costs about 25% of the total requirement cost. Based on the cost distribution
data given earlier, develop a cost estimation model that can be used to predict the cost
after (a) the feasibility study and (b) the detailed requirements. What are the basic
parameters for this cost model? How accurate is this cost model?

20 For the aboved if effort s estinnued adter the feasibility studv, some clear rvisks cmneroe,
What ave these and what will he vonr mitication play?

3. Consider a project to develop a full-screen editor. The major components identified are
(1) screen edit, (2) command language interpreter, (3) file input and output, (4) cursor
movement, and (5) screen movement. The sizes for these are estimated to be 4K, 2K, 1K,
2K, and 3K delivered source code lines. Use the COCOMO model to determine overall
effort and schedule estimates (assume values for different cost drivers, with at least three
of them being different from 1.0) and effort and schedule estimates for different phases.
(b) Use the bottom-up approach given in the chapter to estimate the effort.

Lo the preceding example. desiining that von e o toans of 5 people. devolop o el

level sehednde, sand o dorailed schodnle,

5. What are the limitations of the cost estimation models?

G0 N that vessine o bue fidies s offort = proportionat to the mher of ereor < detocrod
trevardless of the antiee of crvore Sappose thit testine detects D050 oF e roral errors
CHE rermar amdereeted s By sadiling dbestan aond code reviows. suppose the cost of the

destan cnd coding phoses Tercasos by 100 el divom the Base disteibution eisen enbier s

i { ) I 1 . .. . .
and TN of the crvors e deteerad i desion rovieses oned 1070 1 code reviews,  So. tet e

. Lo e o , . . . ,
nov detects onlv TOUC of evvors D Wit s thie ipaet on the overall cost of reviews?”
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11.

13.
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You want to monitor the effort spent on different phases in the project and the time spent
on different components. Design a time sheet or form to be filled in by the programmers
that can be used to get this data. The design should be such that automated processing
is possible.

ceat et progent beine done e a scmester conwrse. st the major risks and risk

Srateo Aoy thon,

5

For a group student project in the software éngineering course, device a suitable monitor-
ing plan, and plans for data collection for this monitoring.

Bl o opreiect fooannage envollment and activities in a hobby club. design a suitable

ch

Suppose a customer gives a project to build parts of a larger system to your group, and
other parts to some other groups. Your group has to use an internal tool of the customer,
whose new version is to come out soon. Prepare a risk management plan for your project.

s e e veoend cvelel suppose the defect ujection rates in require-
cevie desioon and cading are 5 defeers per KLOCT 10 defeets per KLOC, and 60 defects
v KUOC reapoctivele. Develop o gnality plan and give some removal rates for the dif-
ferenr O fadkie iy vony plan <ueh that the final gnality is less than 2 defects per KLOC.

For the injectién rates given above, suppose the defect removal efficiency of requirement
review, design review, unit testing, and system testing are 80% each. What would be
the final delivered quality, assuming that these are the only QC tasks performed in the
project.

e theye are ditterent effort for rewoving defects in different
Qv et rhat the effort inereases ae the removal efficiency of the task inereases. On
o heeie venle con o Hecate effort to different QO tasks? (An approach for a geneval
foron o f e ienblon can Le foaned i 11021
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Case Studies

Case Study 1-—Course Scheduling

Here we present some aspects of developing the project plan. The complete plan
is available from the book’s Web site. The project has three main modules. The size
estimates for these in lines of code are:

lupuw 6O
schiedule 6550
Chitpat L5u
TOTAL M == LD B

Because this project is somewhat small and straightforward, a waterfall type of
process will be used. We use the simple method of determining the total effort from the
size based on average productivity. Based on experience and capability of programmers
(though no data has been formally collected for this), it is felt that for a project of this
size the productivity will be of the order of 600 LOC per PM. From this, we get the

effort estimate:
Fo= 10 e 2 1A

To get the phase-wise breakup of cost we use the distribution of costs given earlier for
COCOMO. The phase-wise cost breakup for the project is

Desiun L Y A
Detailed Pesion Bt
Coding and Testing
Integration 0o D v

The total coding and unit testing effort is one PM, in which the different modules
will be coded and tested. We approximate the effort for the different modules in this
phase by dividing one PM in the ratio of the sizes of the modules. From this we get the
estimate for coding and unit testing of different modules.

The team consists of three persons, all of whom are students who will devote about
one-third to one-fourth of their time to the project. A relatively flat team structure will
be used with a leader who will allocate tasks to team members. During system design,
only the two members will be involved. During detailed design, coding and unit testing,
all three will work. There will be no librarian or configuration controller in the project,
as it is a small project, and the programmers themselves will do the documentation and
configuration management tasks.

The project will produce the following documents (besides the SRS): System de-
sign, code, system test plan, and system test report. No unit testing report is needed.
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Similarly, detailed design is treated as an activity to help the programmer but its output
need not be submitted or reviewed. The quality plan will be fixed accordingly.
The final project plan for the project is available from the Web site.

C'ase Study 2—PINS

In this case study, as it was felt that the requirements are not fully clear and may evolve,

an interactive development process was chosen, with two iterations. What will be done

in the two iterations was decided, as given below.

Iteration 1. Basic functionality of PIMS without anthentication and without cefting
current value data froun the Web, That i< ull inodules related to data access and

niain control, and modules for keyv computations

Iteration 2. Enhance to get eurrent data from the Web, huild seenvity, installation
module, aud the alert svstem.

A bottom-up estimation was done for these two iterations. The effort and schedule
estimates for the two iterations were.

o lteration 1. 192 person days: 27 day=.
o [teration 20 & person-cdivs: 10 das,

The assignment to team members was straightforward. The risk management plan
was also simple. The complete project management plan is available from the Web
site—it is self explanatory.
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Function-Oriented Design

The design activity begins when the requirements document for the software to be
developed is available and the architecture has been designed. During design we further
refine the architecture. Generally, design focuses on the what we have called the module
view in Chapter 4. That is, during design we determine what modules should the system
have and which have to be developed. Sometimes, the module view may effectively be
a module structure of each component in the architecture. That is, the design exercise
determines the module structure of the components. However, this simple mapping of
components and modules may not always hold. In that case we have to ensure that the
module view created in design is consistent with the architecture.

The design of a system is essentially a blueprint or a plan for a solution for the
system. Here we consider a system to be a set of modules with clearly defined behavior
which interact with each other in a defined manner to produce some behavior or services
for its environment. A module of a system can be considered a system, with its own
modules.

The design process for software systems often has two levels. At the first level the
focus is on deciding which modules are needed for the system, the specifications of
these modules, and how the modules should be interconnected. This is what is called
the system design or top-level design. In the second level, the internal design of the
modules, or how the specifications of the module can be satisfied, is decided. This
design level is often called detailed design or logic design. Detailed design essentially
expands the system design to contain a more detailed description of the processing logic
and data structures so that the design is sufficiently complete for coding.

A design methodology is a systematic approach to creating a design by applying of a
set of techniques and guidelines. Most design methodologies focus on the system design,
and do not reduce the design activity to a sequence of steps that can be blindly followed
by the designer.

In this chapter we discuss the function-oriented methods for design and describe
one particular methodology—the structured design methodology—in some detail. In

215
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a function-oriented design approach, a system is viewed as a transformation function,
transforming the inputs to the desired outputs. The purpose of the design phase is
to specify the components for this transformation function, so that each component is
also a transformation function. That is, each module in design supports a functional
abstraction. The basic output of the system design phase, when a function oriented
design approach is being followed, is the definition of all the major data structures in
the system, all the major modules of the system, and how the modules interact with
each other.

In this chapter, we first discuss some general design principles. Then we discuss
a notation for expressing function-oriented designs and describe the structured design
methodology for developing a design. Then we discuss some verification methods for
design and some metrics that are applicable to function-oriented designs. As in most
chapters, we will end with the case studies.

6.1 Design Principles

The design of a system is correct if a system built precisely according to the design
satisfies the requirements of that system. Clearly, the goal during the design phase
is to produce correct designs. However, correctness is not the sole criterion during the
design phase, as there can be many correct designs. The goal of the design process is not
simply to produce a design for the system. Instead, the goal is to find the best possible
design within the limitations imposed by the requirements and the physical and social
environment in which the system will operate.

To evaluate a design, we have to specify some properties and criteria that can be
used for evaluation. Ideally, these properties should be as quantitative as possible. In
that situation we can precisely evaluate the “goodness” of a design and determine the
best design. However, criteria for quality of software design is often subjective or non-
quantifiable. In such a situation, criteria are essentially thumb rules that aid design
evaluation.

A design should clearly be verifiable, complete (implements all the specifications),
and traceable (all design elements can be traced to some requirements). However,
the two most important properties that concern designers are efficiency and simplicity.
Efficiency of any system is concerned with the proper use of scarce resources by the
system. The need for efficiency arises due to cost considerations. If some resources are
scarce and expensive, it is desirable that those resources be used efficiently. In computer
systems, the resources that are most often considered for efficiency are processor time
and memory. An efficient system is one that consumes less processor time and requires
less memory. In earlier days, the efficient use of CPU and memory was important due
to the high cost of hardware. Now that the hardware costs are low compared to the
software costs, for many software systems traditional efficiency concerns now take a
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back seat compared to other considerations. One of the exceptions is real-time systems,
for which there are strict execution time constraints.

Simplicity is perhaps the most important quality criteria for software systems. We
have seen that maintenance of software is usually quite expensive. Maintainability of
software is one of the goals we have established. The design of a system is one of the most
important factors affecting the maintainability of a system. During maintenance, the
first step a maintainer has to undertake is to understand the system to be maintained.
Only after a maintainer has a thorough understanding of the different modules of the
system, how they are interconnected, and how modifying one will affect the others
should the modification be undertaken. A simple and understandable design will go a
long way in making the job of the maintainer easier.

These criteria are not independent, and increasing one may have an unfavorable
effect on another. For example, often the “tricks” used to increase efficiency of a system
result in making the system more complex. Therefore, design decisions frequently in-
volve trade-offs. It is the designers’ job to recognize the trade-offs and achieve the best
balance. For our purposes, simplicity is the primary property of interest, and therefore
the objective of the design process is to produce designs that are simple to understand.

Creating a simple (and efficient) design of a large system can be an extremely com-
plex task that requires good engineering judgment. As designing is fundamentally a
creative activity, it cannot be reduced to a series of steps that can be simply followed,
though guidelines can be provided. In this section we will examine some basic guiding
principles that can be used to produce the design of a system. Some of these design
principles are concerned with providing means to effectively handle the complexity of
the design process. Effectively handling the complexity will not only reduce the effort
needed for design (i.e., reduce the design cost), but can also reduce the scope of intro-
ducing errors during design. The principles discussed here form the basis for most of
the design methodologies. ‘

It should be noted that the principles that can be used in design are the same as
those used in problem analysis. In fact, the methods are also similar because in both
analysis and design we are essentially constructing models. However, there are some
fundamental differences. First, in problem analysis, we are constructing a model of the
problem domain, while in design we are constructing a model for the solution domain.
Second, in problem analysis, the analyst has limited degrees of freedom in selecting
the models as the problem is given, and modeling has to represent it. In design, the
designer has a great deal of freedom in deciding the models, as the system the designer
is modeling does not exist; in fact the designer is creating a model for the system that
will be the basis of building the system. That is, in design, the system depends on
the model, while in problem analysis the model depends on the system. Finally, as
pointed out earlier, the basic aim of modeling in problem analysis is to understand,
while the basic aim of modeling in design is to optimize (in our case, simplicity and
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performance). In other words, though the basic principles and techniques might look
similar, the activities of analysis and design are very different.

6.1.1 Problem Partitioning and Hierarchy

When solving a small problem, the entire problem can be tackled at once. The complex-
ity of large problems and the limitations of human minds do not allow large problems
to be treated as huge monoliths. For solving larger problems, the basic principle is the
time-tested principle of “divide and conquer.” Clearly, dividing in such a manner that
all the divisions have to be conquered together is not the intent of this wisdom. This
principle, if elaborated, would mean “divide into smaller pieces, so that each piece can
be conquered separately.”

For software design, therefore, the goal is to divide the problem into manageably
small pieces that can be solved separately. It is this restriction of being able to solve
each part separately that makes dividing into pieces a complex task and that many
methodologies for system design aim to address. The basic rationale behind this strategy
is the belief that if the pieces of a problem are solvable separately, the cost of solving
the entire problem is more than the sum of the cost of solving all the pieces.

However, the different pieces cannot be entirely independent of each other, as they
together form the system. The different pieces have to cooperate and communicate
to solve the larger problem. This communication adds complexity, which arises due
to partitioning and may not have existed in the original problem. As the number of
components increases, the cost of partitioning, together with the cost of this added
complexity, may become more than the savings achieved by partitioning. It is at this
point that no further partitioning needs to be done. The designer has to make the
judgment about when to stop partitioning.

As discussed earlier, two of the most important quality criteria for software design
are simplicity and understandability. It can be argued that maintenance is minimized
if each part in the system can be easily related to the application and each piece can
be modified separately. If a piece can be modified separately, we call it independent of
other pieces. If module A is independent of module B, then we can modify A without
introducing any unanticipated side effects in B. Total independence of modules of one
system is not possible, but the design process should support as much independence
as possible between modules. Dependence between modules in a software system is
one of the reasons for high maintenance costs. Clearly, proper partitioning will make
the system easier to maintain by making the design easier to understand. Problem
partitioning also aids design verification.

Problem partitioning, which is essential for solving a complex problem, leads to hi-
erarchies in the design. That is, the design produced by using problem partitioning can
be represented as a hierarchy of components. The relationship between the elements in
this hierarchy can vary depending on the method used. For example, the most common
is the “whole—part of” relationship. In this, the system consists of some parts, each
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part consists of subparts, and so on. This relationship can be naturally represented as
a hierarchical structure between various system parts. In general, hierarchical struc-
ture makes it much easier to comprehend a complex system. Due to this, all design
methodologies aim to produce a design that employs hierarchical structures.

G.1.2  Abstraction

Abstraction is a very powerful concept that is used in all engineering disciplines. It is
a tool that permits a designer to consider a component at an abstract level without
worrying about the details of the implementation of the component. Any component
or system provides some services to its environment. An abstraction of a component
describes the external behavior of that component without bothering with the internal
details that produce the behavior. Presumably, the abstract definition of a component
is much simpler than the component itself.

Abstraction is an indispensable part of the design process and is essential for prob-
lem partitioning. Partitioning essentially is the exercise in determining the components
of a system. However, these components are not isolated from each other; they inter-
act with each other, and the designer has to specify how a component interacts with
other components. To decide how a component interacts with other components, the
designer has to know, at the very least, the external behavior of other components. If
the designer has to understand the details of the other components to determine their
external behavior, we have defeated the purpose of partitioning—isolating a compo-
nent from others. To allow the designer to concentrate on one component at a time,
abstraction of other components is used.

Abstraction is used for existing components as well as components that are being
designed. Abstraction of existing components plays an important role in the mainte-
nance phase. To modify a system, the first step is understanding what the system does
and how. The process of comprehending an existing system involves identifying the
abstractions of subsystems and components from the details of their implementations.
Using these abstractions, the behavior of the entire system can be understood. This
also helps determine how modifying a component affects the system.

During the design process, abstractions are used in the reverse manner than in
the process of understanding a system. During design, the components do not exist,
and in the design the designer specifies only the abstract specifications of the different
components. The basic goal of system design is to specify the modules in a system
and their abstractions. Once the different modules are specified, during the detailed
design the designer can concentrate on one module at a time. The task in detailed
design and implementation is essentially to implement the modules so that the abstract
specifications of each module are satisfied.

There are two common abstraction mechanisms for software systems: functional
abstraction and data abstraction. In functional abstraction, a module is specified by
the function it performs. For example, a module to compute the log of a value can
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be abstractly represented by the function log. Similarly, a module to sort an input
array can be represented by the specification of sorting. Functional abstraction is the
basis of partitioning in function-oriented approaches. That is, when the problem is
being partitioned, the overall transformation function for the system is partitioned into
smaller functions that comprise the system function. The decomposition of the system
is in terms of functional modules.

The second unit for abstraction is data abstraction. Any entity in the real world
provides some services to the environment to which it belongs. Often the entities provide
some fixed predefined services. The case of data entities is similar. Certain operations
are required from a data object, depending on the object and the environment in which it
is used. Data abstraction supports this view. Data is not treated simply as objects, but
is treated as objects with some predefined operations on them. The operations defined
on a data object are the only operations that can be performed on those objects. From
outside an object, the internals of the object are hidden; only the operations on the
object are visible. Data abstraction forms the basis for object-oriented design, which is
discussed in the next chapter. In using this abstraction, a system is viewed as a set of
objects providing some services. Hence, the decomposition of the system is done with
respect to the objects the system contains.

6.1.3 DMNlodularity

As mentioned earlier, the real power of partitioning comes if a system is partitioned
into modules so that the modules are solvable and modifiable separately. It will be even
better if the modules are also separately compilable (then changes in a module will not
require recompilation of the whole system). A system is considered modular if it consists
of discreet components so that each component can be implemented separately, and a
change to one component has minimal impact on other components.

Modularity is a clearly a desirable property in a system. Modularity helps in system
debugging—isolating the system problem to a component is easier if the system is
modular; in system repair—changing a part of the system is easy as it affects few other
parts; and in system building—a modular system can be easily built by “putting its
modules together.”

A software system cannot be made modular by simply chopping it into a set of
modules. For modularity, each module needs to support a well-defined abstraction and
have a clear interface through which it can interact with other modules. Modularity is
where abstraction and partitioning come together. For easily understandable and main-
tainable systems, modularity is clearly the basic objective; partitioning and abstraction
can be viewed as concepts that help achieve modularity.

6.1.4 Top-Down and Bottom-Up Strategies

A system consists of components, which have components of their own; indeed a sys-
tem is a hierarchy of components. The highest-level component correspond to the total
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system. To design such a hierarchy there are two possible approaches: top-down and
bottom-up. The top-down approach starts from the highest-level component of the hi-
erarchy and proceeds through to lower levels. By contrast, a bottom-up approach starts
with the lowest-level component of the hierarchy and proceeds through progressively
higher levels to the top-level component.

A top-down design approach starts by identifying the major components of the
system, decomposing them into their lower-level components and iterating until the
desired level of detail is achieved. Top-down design methods often result in some form
of stepwise refinement. Starting from an abstract design, in each step the design is
refined to a more concrete level, until we reach a level where no more refinement is
needed and the design can be implemented directly. The top-down approach has been
promulgated by many researchers and has been found to be extremely useful for design.
Most design methodologies are based on the top-down approach.

A bottom-up design approach starts with designing the most basic or primitive com-
ponents and proceeds to higher-level components that use these lower-level components.
Bottom-up methods work with layers of abstraction. Starting from the very bottom,
operations that provide a layer of abstraction are implemented. The operations of this
layer are then used to implement more powerful operations and a still higher layer of
abstraction, until the stage is reached where the operations supported by the layer are
those desired by the system.

A top-down approach is suitable only if the specifications of the system are clearly
known and the system development is from scratch. However, if a system is to be built
from an existing system, a bottom-up approach is more suitable, as it starts from some
existing components. So, for example, if an iterative enhancement type of process is
being followed, in later iterations, the bottom-up approach could be more suitable (in
the first iteration a top-down approach can be used).

Pure top-down or pure bottom-up approaches are often not practical. For a bottom-
up approach to be successful, we must have a good notion of the top to which the design
should be heading. Without a good idea about the operations needed at the higher
layers, it is difficult to determine what operations the current layer should support.
Top-down approaches require some idea about the feasibility of the components specified
during design. The components specified during design should be implementable, which
requires some idea about the feasibility of the lower-level parts of a component. A
common approach to combine the two approaches is to provide a layer of abstraction
for the application domain of interest through libraries of functions, which contains
the functions of interest to the application domain. Then use a top-down approach to
determine the modules in the system, assuming that the abstract machine available for
implementing the system provides the operations supported by the abstraction layer.
This approach is frequently used for developing systems. It can even be claimed that
it is almost universally used these days, as most developments now make use of the
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layer of abstraction supported in a system consisting of the library functions provided
by operating systems, programming languages, and special-purpose tools.

6.2 Module-Level Concepts

In the previous section we discussed some general design principles. Now we turn our
attention to some concepts specific to function-oriented design. Before we discuss these,
let us define what we mean by a module. A module is a logically separable part of a
program. It is a program unit that is discreet and identifiable with respect to compiling
and loading. In terms of common programming language constructs, a module can be
a macro, a function, a procedure (or subroutine), a process, or a package. In systems
using functional abstraction, a module is usually a procedure of function or a collection
of these.

To produce modular designs, some criteria must be used to select modules so that the
modules support well-defined abstractions and are solvable and modifiable separately.
In a system using functional abstraction, coupling and cohesion are two modularization
criteria, which are often used together.

6.2.1 Coupling

Two modules are considered independent if one can function completely without the
presence of other. Obviously, if two modules are independent, they are solvable and
modifiable separately. However, all the modules in a system cannot be independent of
each other, as they must interact so that together they produce the desired external
behavior of the system. The more connections between modules, the more dependent
they are in the sense that more knowledge about one module is required to understand or
solve the other module. Hence, the fewer and simpler the connections between modules,
the easier it is to understand one without understanding the other. The notion of
coupling [138, 154] attempts to capture this concept of “how strongly” different modules
are interconnected.

Coupling between modules is the strength of interconnections between modules or a
measure of interdependence among modules. In general, the more we must know about
module A in order to understand module B, the more closely connected A is to B.
“Highly coupled” modules are joined by strong interconnections, while “loosely coupled”
modules have weak interconnections. Independent modules have no interconnections.
To solve and modify a module separately, we would like the module to be loosely coupled
with other modules. The choice of modules decides the coupling between modules.
Because the modules of the software system are created during system design, the
coupling between modules is largely decided during system design and cannot be reduced
during implementation.
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Coupling increases with the complexity and obscurity of the interface between mod-
ules. To keep coupling low we would like to minimize the number of interfaces per
module and the complexity of each interface. An interface of a module is used to pass
information to and from other modules. Coupling is reduced if only the defined entry
interface of a module is used by other modules (for example, passing information to and
from a module exclusively through parameters). Coupling would increase if a module
is used by other modules via an indirect and obscure interface, like directly using the
internals of a module or using shared variables.

Complexity of the interface is another factor affecting coupling. The more complex
each interface is, the higher will be the degree of coupling. For example, complexity
of the entry interface of a procedure depends on the number of items being passed as
parameters and on the complexity of the items. Some level of complexity of interfaces is
required to support the communication needed between modules. However, often more
than this minimum is used. For example, if a field of a record is needed by a procedure,
often the entire record is passed, rather than just passing that field of the record. By
passing the record we are increasing the coupling unnecessarily. Essentially, we should
keep the interface of a module as simple and small as possible.

The type of information flow along the interfaces is the third major factor affecting
coupling. There are two kinds of information that can flow along an interface: data or
control. Passing or receiving control information means that the action of the module
will depend on this control information, which makes it more difficult to understand the
module and provide its abstraction. Transfer of data information means that a module
passes as input some data to another module and gets in return some data as output.
This allows a module to be treated as a simple input-output function that performs some
transformation on the input data to produce the output data. In general, interfaces with
only data communication result in the lowest degree of coupling, followed by interfaces
that only transfer control data. Coupling is considered highest if the data is hybrid,
that is, some data items and some control items are passed between modules. The effect
of these three factors on coupling is summarized in Table 6 [138].

Interface Type of Type of
Complexity  Connection Communication
Low  Simple To module Data
obvious by name
Control

High Complicated To internal
obscure elements Hybrid

Table 6.1: Factors affecting coupling.
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6.2.2 Cohesion

We have seen that coupling is reduced when the relationships among elements in dif-
ferent modules are minimized. That is, coupling is reduced when elements in different
modules have little or no bonds between them. Another way of achieving this effect is
to strengthen the bond between elements of the same module by maximizing the rela-
tionship between elements of the same module. Cohesion is the concept that tries to
capture this intra-module [138, 154]. With cohesion, we are interested in determining
how closely the elements of a module are related to each other.

Cohesion of a module represents how tightly bound the internal elements of the mod-
ule are to one another. Cohesion of a module gives the designer an idea about whether
the different elements of a module belong together in the same module. Cohesion and
coupling are clearly related. Usually, the greater the cohesion of each module in the
system, the lower the coupling between modules is. This correlation is not perfect, but
it has been observed in practice. There are several levels of cohesion:

e (‘oincidental

Locical

Temporal

e Procedural

e (omuitulicatioual
e Scquential

e Fuictional

Coincidental is the lowest level, and functional is the highest. These levels do not form
a linear scale. Functional binding is much stronger than the rest, while the first two
are considered much weaker than others. Often, many levels can be applicable when
considering cohesion between two elements of a module. In such situations, the highest
level is considered. Cohesion of a module is considered the highest level of cohesion
applicable to all elements in the module.

Coincidental cohesion occurs when there is no meaningful relationship among the
elements of a module. Coincidental cohesion can occur if an existing program is “mod-
ularized” by chopping it into pieces and making different pieces modules. If a module is
created to save duplicate code by combining some part of code that occurs at many dif-
ferent places, that module is likely to have coincidental cohesion. In this situation, the
statements in the module have no relationship with each other, and if one of the modules
using the code needs to be modified and this modification includes the common code,
it is likely that other modules using the code do not want the code modified. Conse-
quently, the modification of this “common module” may cause other modules to behave
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incorrectly. The modules using these modules are therefore not modifiable separately
and have strong interconnection between them. We can say that, generally speaking, it
is poor practice to create a module merely to avoid duplicate code (unless the common
code happens to perform some identifiable function, in which case the statements will
have some relationship between them) or to chop a module into smaller modules to
reduce the module size.

A module has logical cohesion if there is some logical relationship between the ele-
ments of a module, and the elements perform functions that fall in the same logical class.
A typical example of this kind of cohesion is a module that performs all the inputs or all
the outputs. In such a situation, if we want to input or output a particular record, we
have to somehow convey this to the module. Often, this will be done by passing some
kind of special status flag, which will be used to determine what statements to execute
in the module. Besides resulting in hybrid information fiow between modules, which is
generally the worst form of coupling between modules, such a module will usually have
tricky and clumsy code. In general, logically cohesive modules should be avoided, if
possible.

Temporal cohesion is the same as logical cohesion, except that, the elements are also
related in time and are executed together. Modules that perform activities like “ini-
tialization,” “clean-up,” and “termination” are usually temporally bound. Even though
the elements in a temporally bound module are logically related, temporal cohesion is
higher than logical cohesion, because the elements are all executed together. This avoids
the problem of passing the flag, and the code is usually simpler.

A procedurally cohesive module contains elements that belong to a common proce-
dural unit. For example, a loop or a sequence of decision statements in a module may
be combined to form a separate module. Procedurally cohesive modules often occur
when modular structure is determined from some form of flowchart. Procedural cohe-
sion often cuts across functional lines. A module with only procedural cohesion may
contain only part of a complete function or parts of several functions.

A module with communicational cohesion has elements that are related by a refer-
ence to the same input or output data. That is, in a communicationally bound module,
the elements are together because they operate on the same input or output data. An
example of this could be a module to “print and punch record.” Communicationally
cohesive modules may perform more than one function. However, communicational co-
hesion is sufficiently high as to be generally acceptable if alternative structures with
higher cohesion cannot be easily identified.

When the elements are together in a module because the output of one forms the
input to another, we get sequential cohesion. If we have a sequence of elements in which
the output of one forms the input to another, sequential cohesion does not provide
any guidelines on how to combine them into modules. Different possibilities exist:
combine all in one module, put the first half in one and the second half in another, the
first third in one and the rest in the other, and so forth. Consequently, a sequentially
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bound module may contain several functions or parts of different functions. Sequentially
cohesive modules bear a close resemblance to the problem structure. However, they are
considered to be far from the ideal, which is functional cohesion.

Functional cohesion is the strongest cohesion. In a functionally bound module, all
the elements of the module are related to performing a single function. By function,
we do not mean simply mathematical functions; modules accomplishing a single goal
are also included. Functions like “compute square root” and “sort the array” are clear
examples of functionally cohesive modules.

How does one determine the cohesion level of a module? There is no mathematical
formula that can be used. We have to use our judgment for this. A useful technique for
determining if a module has functional cohesion is to write a sentence that describes,
fully and accurately, the function or purpose of the module. The following tests can
then be made [138]:

1o I the sentence must be a compound sentence. i1t contaius a comma. or it has has
more than one verb. the wodule is probably performing mwore than one tunction,
and it probably has sequential or connnmunicational cohesion.

20 I the sentence contatus words relating to thne, like “Hrst.” next,” swhen” and

“after” the module probably has sequential or temporal cohesion.

3010 the predicate of the sentence does ot contadn a single =pecific object following

the ver fsiieh as vedit all data™) the module probably has logical coliesion.
1 Words like “initialize”™ and cleammp”™ imply temporal cohesion.

Modules with functional cohesion can always be described by a simple sentence. How-
ever, if a description is a compound sentence, it does not mean that the module does
not have functional cohesion. Functionally cohesive modules can also be described by
compound sentences. If we cannot describe it using a simple sentence, the module is
not likely to have functional cohesion.

6.3 Design Notation and Specification

During the design phase there are two things of interest: the design of the system, the
producing of which is the basic objective of this phase, and the process of designing
itself. It is for the latter that principles and methods are needed. In addition, while
designing, a designer needs to record his thoughts and decisions and to represent the
design so that he can view it and play with it. For this, design notations are used.
Design notations are largely meant to be used during the process of design and are
used to represent design or design decisions. They are meant largely for the designer so
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that he can quickly represent his decisions in a compact manner that he can evaluate
and modify. These notations are frequently graphical.

Once the designer is satisfied with the design he has produced, the design is to be
precisely specified in the form of a document. Whereas a design represented using the
design notation is largely to be used by the designer, a design specification has to be
so precise and complete that it can be used as a basis of further development by other
programmers. Often, design specification uses textual structures, with design notation
helping understanding.

6.3.1  Structure Charts

For a function-oriented design, the design can be represented graphically by structure
charts. The structure of a program is made up of the modules of that program together
with the interconnections between modules. Every computer program has a structure,
and given a program its structure can be determined. The structure chart of a program
is a graphic representation of its structure. In a structure chart a module is represented
by a box with the module name written in the box. An arrow from module A to module
B represents that module A invokes module B. B is called the subordinate of A, and
A is called the superordinate of B. The arrow is labeled by the parameters received by
B as input and the parameters returned by B as output, with the direction of flow of
the input and output parameters represented by small arrows. The parameters can be
shown to be data (unfilled circle at the tail of the label) or control (filled circle at the
tail). As an example consider the structure of the following program, whose structure
is shown in Figure 6.1.
{3
main()
{
int sum, n, N, a[MAX];
readnums(a, &N); sort(a, N); scanf(&n);
sum = add_n(a, n); printf(sum);

}

readnums(a, N)
int a[], =*N;
{

}

sort(a, N)
int a[l, N;

{

if (alil > alt]) switch(alil, alt]);
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}

/* Add the first n numbers of a */
add_n(a, n)

int afl], n;

{

}

main
an. sum
O/ ahn $ ia 0\1\
an
readnums sort add_n
RV i ix, v
switch

Ficure 6.1 The straneture chavt of the sort progrant.

In general, procedural information is not represented in a structure chart, and the
focus is on representing the hierarchy of modules. However, there are situations where
the designer may wish to communicate certain procedural information explicitly, like
major loops and decisions. Such information can also be represented in a structure
chart. For example, let us consider a situation where module A has subordinates B,
C, and D, and A repeatedly calls the modules C and D. This can be represented by a
looping arrow around the arrows joining the subordinates C and D to A, as shown in
Figure 6.2. All the subordinate modules activated within a common loop are enclosed
in the same looping arrow.

Major decisions can be represented similarly. For example, if the invocation of mod-
ules C and D in module A depends on the outcome of some decision, that is represented
by a small diamond in the box for A, with the arrows joining C and D coming out of
this diamond, as shown in Figure 6.2.

Modules in a system can be categorized into few classes. There are some modules
that obtain information from their subordinates and then pass it to their superordinate.
This kind of module is an input module. Similarly, there are output modules. that take
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A A
B C D B C D
Fignre .20 Itoration and decision representation,

information from their superordinate and pass it on to its subordinates. As the name
suggests, the input and output modules are typically used for input and output of data
from and to the environment. The input modules get the data from the sources and get
it ready to be processed, and the output modules take the output produced and prepare
it for proper presentation to the environment. Then there are modules that exist solely
for the sake of transforming data into some other form. Such a module is called a
transform module. Most of the computational modules typically fall in this category.
Finally, there are modules whose primary concern is managing the flow of data to and
from different subordinates. Such modules are called coordinate modules. The structure
chart representation of the different types of modules is shown in Figure 6.3.

O/ Data (¢ \% Data from

Superiordirate Superiordinate

input Output
Moduie Module
?l L
Coordinate Transform
Moduie Module

R
|

Compostte
Moaule

¥ X

Figwre 0.5 Ditterent yvpes of modhides,




230 CHAPTER 6. FUNCTION-ORIENTED DESIGN

A module can perform functions of more than one type of module. For example,
the composite module in Figure 6.3 is an input module from the point of view of its
superordinate, as it feeds the data Y to the superordinate. Internally, A is a coordi-
nate module and views its job as getting data X from one subordinate and passing it
to another subordinate, which converts it to Y. Modules in actual systems are often
composite modules.

A structure chart is a nice representation mechanism for a design that uses func-
tional abstraction. It shows the modules and their call hierarchy, the interfaces between
the modules, and what information passes between modules. It is a convenient and
compact notation that is very useful while creating the design. That is, a designer can
make effective use of structure charts to represent the model he is creating while he
is designing. However, it is not sufficient for representing the final design, as it does
not give all the information needed about the design. For example, it does not specify
the scope, structure of data, specifications of each module, etc. Hence, it is generally
supplemented with textual specifications to convey design to the implementer.

We have seen how to determine the structure of an existing program. But once
the program is written, its structure is fixed and little can be done about altering the
structure. However, for a given set of requirements many different programs can be
written to satisfy the requirements, and each program can have a different structure.
That is, although the structure of a given program is fixed, for a given set of require-
ments, programs with different structures can be obtained. The objective of the design
phase using function-oriented method is to control the eventual structure of the system
by fixing the structure during design.

t.3.2  Specification

Using some design rules or methodology, a conceptual design of the system can be
produced in terms of a structure chart. As seen earlier, in a structure chart each module
is represented by a box with a name. The functionality of the module is essentially
communicated by the name of the box, and the interface is communicated by the data
items labeling the arrows This is alright while the designer is designing but inadequate
when the design is to be communicated. To avoid these problems, a design specification
should define the major data structures, modules and their specifications, and design
decisions.

During system design, the major data structures for the software are identified;
without these, the system modules cannot be meaningfully defined during design. In
the design specification, a formal definition of these data structures should be given.

Module specification is the major part of system design specification. All modules in
the system should be identified when the system design is complete, and these modules
should be specified in the document. During system design only the module specification
is obtained, because the internal details of the modules are defined later. To specify



6.4. STRUCTURED DESIGN METHODOLOGY 231

a module, the design document must specify (a) the interface of the module (all data
items, their types, and whether they are for input and/or output), (b) the abstract
behavior of the module (what the module does) by specifying the module’s functionality
or its input/output behavior, and (c) all other modules used by the module being
specified—this information is quite useful in maintaining and understanding the design.

Hence, a design specification will necessarily contain specification of the major data
structures and modules in the system. After a design is approved (using some verification
mechanism), the modules will have to be implemented in the target language. This
requires that the module “headers” for the target language first be created from the
design. This translation of the design for the target language can introduce errors if it’s
done manually. To eliminate these translation errors, if the target language is known
(as is generally the case after the requirements have been specified), it is better to have
a design specification language whose module specifications can be used almost directly
in programming. This not only minimizes the translation errors that may occur, but
also reduces the effort required for translating the design to programs. It also adds
incentive for designers to properly specify their design, as the design is no longer a
“mere” document that will be thrown away after review—it will now be used directly
in coding. In the case study, a design specification language close to C has been used.
From the design, the module headers for C can easily be created with some simple
editing.

To aid the comprehensibility of the design, all major design decisions made by the
designers during the design process should be explained explicitly. The choices that
were available and the reasons for making a particular choice should be explained. This
makes a design more visible and will help in understanding the design.

6.4 Structured Design Methodology

Creating the software system design is the major concern of the design phase. Many de-
sign techniques have been proposed over the years to provide some discipline in handling
the complexity of designing large systems. The aim of design methodologies is not to
reduce the process of design to a sequence of mechanical steps but to provide guidelines
to aid the designer during the design process. Here we describe the structured design
methodology [138, 154] for developing system designs.

Structured design methodology (SDM) views every software system as having some
inputs that are converted into the desired outputs by the software system. The soft-
ware is viewed as a transformation function that transforms the given inputs into the
desired outputs, and the central problem of designing software systems is considered
to be properly designing this transformation function. Due to this view of software,
the structured design methodology is primarily function-oriented and relies heavily on
functional abstraction and functional decomposition.
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The concept of the structure of a program lies at the heart of the structured design
method. During design, structured design methodology aims to control and influence
the structure of the final program. The aim is to design a system so that programs
implementing the design would have a hierarchical structure, with functionally cohesive
modules and as few interconnections between modules as possible.

In properly designed systems it is often the case that a module with subordinates
does not actually perform much computation. The bulk of actual computation is per-
formed by its subordinates, and the module itself largely coordinates the data flow
between the subordinates to get the computation done. The subordinates in turn can
get the bulk of their work done by their subordinates until the “atomic” modules, which
have no subordinates, are reached. Factoring is the process of decomposing a module so
that the bulk of its work is done by its subordinates. A system is said to be completely
factored if all the actual processing is accomplished by bottom-level atomic modules
and if non-atomic modules largely perform the jobs of control and coordination. SDM
attempts to achieve a structure that is close to being completely factored.

The overall strategy is to identify the input and output streams and the primary
transformations that have to be performed to produce the output. High-level modules
are then created to perform these major activities, which are later refined. There are
four major steps in this strategy:
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We will now discuss each of these steps in more detail. The design of the case study using
structured design will be given later. For illustrating each step of the methodology as
we discuss them, we consider the following problem: there is a text file containing words
separated by blanks or new lines. We have to design a software system to determine

the number of unique words in the file.

.11 Restate the Problem as o Data Flow Digoram

To use the SD methodology, the first step is to construct the data flow diagram for the
problem. We studied data flow diagrams in Chapter 3. However, there is a fundamen-
tal difference between the DFDs drawn during requirements analysis and those drawn
d ring structured design. In the requirements analysis, a DFD is drawn to model the
problem domain. The analyst has little control over the problem, and hence his task is
to extract from the problem all the information and then represent it as a DFD.
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During design activity, we are no longer modeling the problem domain, but rather
are dealing with the solution domain and developing a model for the eventual system.
That is, the DFD during design represents how the data will flow in the system when it
is built. In this modeling, the major transforms or functions in the software are decided,
and the DFD shows the major transforms that the software will have and how the data
will flow through different transforms. So, drawing a DFD for design is a very creative
activity in which the designer visualizes the eventual system and its processes and data
flows. As the system does not yet exist, the designer has complete freedom in creating
a DFD that will solve the problem stated in the SRS. The general rules of drawing a
DFD remain the same; we show what transforms are needed in the software and are not
concerned with the logic for implementing them. Consider the example of the simple
automated teller machine that allows customers to withdraw money. A DFD for this

ATM is shown in Figure 6.4.
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There are two major streams of input data in this diagram. The first is the account
number and the code, and the second is the amount to be debited. The DFD is self-
explanatory. Notice the use of * at different places in the DFD. For example, the
transform “validate,” which verifies if the account number and code are valid, needs
not only the account number and code, but also information from the system database
to do the validation. And the transform debit account has two outputs, one used for
recording the transaction and the other to update the account.
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As another example, consider the problem of determining the number of different
words in an input file. The data flow diagram for this problem is shown in Figure 6.5.
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Fienre 6.5 DFD for the word-connting problenn.

This problem has only one input data stream, the input file, while the desired output
is the count of different words in the file. To transform the input to the desired output,
the first thing we do is form a list of all the words in the file. It is best to then sort the
list, as this will make identifying different words easier. This sorted list is then used
to count the number of different words, and the output of this transform is the desired
count, which is then printed. This sequence of data transformation is what we have in
the data flow diagram.

6.1.2  lIdentify the Nost Abstract Input and Output Data Elements

Most systems have some basic transformations that perform the required operations.
However, in most cases the transformation cannot be easily applied to the actual physical
input and produce the desired physical output. Instead, the input is first converted
into a form on which the transformation can be applied with ease. Similarly, the main
transformation modules often produce outputs that have to be converted into the desired
physical output. The goal of this second step is to separate the transforms in the data
flow diagram that convert the input or output to the desired format from the ones that
perform the actual transformations.

For this separation, once the data flow diagram is ready, the next step is to identify
the highest abstract level of input and output. The most abstract input data elements
are those data elements in the data flow diagram that are farthest removed from the
physical inputs but can still be considered inputs to the system. The most abstract
input data elements often have little resemblance to the actual physical data. These are
often the data elements obtained after operations like error checking, data validation,
proper formatting, and conversion are complete.
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Most abstract input (MAI) data elements are recognized by starting from the phys-
ical inputs and traveling toward the outputs in the data flow diagram, until the data
elements are reached that can no longer be considered incoming. The aim is to go as
far as possible from the physical inputs, without losing the incoming nature of the data
element. This process is performed for each input stream. Identifying the most abstract
data items represents a value judgment on the part of the designer, but often the choice
is obvious. 7

Similarly, we identify the most abstract output data elements (MAO) by starting
from the outputs in the data flow diagram and traveling toward the inputs. These
are the data elements that are most removed from the actual outputs but can still
be considered outgoing. The MAO data elements may also be considered the logical
output data items, and the transforms in the data flow diagram after these data items
are basically to convert the logical output into a form in which the system is required
to produce the output.

There will usually be some transforms left between the most abstract input and
output data items. These central transforms perform the basic transformation for
the system, taking the most abstract input and transforming it into the most abstract
output. The purpose of having central transforms deal with the most abstract data items
is that the modules implementing these transforms can concentrate on performing the
transformation without being concerned with converting the data into proper format,
validating the data, and so forth. It is worth noting that if a central transform has two
outputs with a + between them, it often indicates the presence of a major decision in
the transform (which can be shown in the structure chart).

Consider the data flow diagram shown in Figure 6.5. The arcs in the data flow
diagram are the most abstract input and most abstract output. The choice of the most
abstract input is obvious. We start following the input. First, the input file is converted
into a word list, which is essentially the input in a different form. The sorted word
list is still basically the input, as it is still the same list, in a different order. This
appears to be the most abstract input because the next data (i.e., count) is not just
another form of the input data. The choice of the most abstract output is even more
obvious; count is the natural choice (a data that is a form of input will not usually
be a candidate for the most abstract output). Thus we have one central transform,
count-number-of-different-words, which has one input and one output data item.

Consider now the data flow diagram of the automated teller shown in Figure 6.4.
The two most abstract inputs are the dollar amount and the validated account number.
The validated account number is the most abstract input, rather than the account
number read in, as it is still the input—but with a guarantee that the account number
is valid. The two abstract outputs are obvious. The abstract inputs and outputs are
marked in the data flow diagram.
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6.4.3 First-Level Factoring

Having identified the central transforms and the most abstract input and output data
items, we are ready to identify some modules for the system. We first specify a main
module, whose purpose is to invoke the subordinates. The main module is therefore
a coordinate module. For each of the most abstract input data items, an immediate
subordinate module to the main module is specified. Each of these modules is an input
module, whose purpose is to deliver to the main module the most abstract data item
for which it is created.

Similarly, for each most abstract output data item, a subordinate module that is an
output module that accepts data from the main module is specified. Each of the arrows
connecting these input and output subordinate modules are labeled with the respective
abstract data item flowing in the proper direction.

Finally, for each central transform, a module subordinate to the main one is specified.
These modules will be transform modules, whose purpose is to accept data from the
main module, and then return the appropriate data back to the main module. The
data items coming to a transform module from the main module are on the incoming
arcs of the corresponding transform in the data flow diagram. The data items returned
are on the outgoing arcs of that transform. Note that here a module is created for a
transform, while input/output modules are created for data items. The structure after
the first-level factoring of the word-counting problem (its data flow diagram was given
earlier) is shown in Figure 6.6.
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Fieure 6.6: Fir-t-level factoring

In this example, there is one input module, which returns the sorted word list to the
main module. The output module takes from the main module the value of the count.
There is only one central transform in this example, and a module is drawn for that.
Note that the data items traveling to and from this transformation module are the same
as the data items going in and out of the central transform.
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Let us examine the data flow diagram of the ATM. We have already seen that this
has two most abstract inputs, two most abstract outputs, and two central transforms.
Drawing a module for each of these, we get the structure chart shown in Figure 6.7.
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Figwe 6.7 Fust-level factoring for ATM.

As we can see, the first-level factoring is straightforward, after the most abstract
input and output data items are identified in the data flow diagram. The main module
is the overall control module, which will form the main program or procedure in the
implementation of the design. It is a coordinate module that invokes the input modules
to get the most abstract data items, passes these to the appropriate transform modules,
and delivers the results of the transform modules to other transform modules until the
most abstract data items are obtained. These are then passed to the output modules.

6,11 Factoring the Inpuat. Output. and Transform Branches

The first-level factoring results in a very high-level structure, where each subordinate
module has a lot of processing to do. To simplify these modules, they must be factored
into subordinate modules that will distribute the work of a module. Each of the input,
output, and transformation modules must be considered for factoring. Let us start with
the input modules.

The purpose of an input module, as viewed by the main program, is to produce
some data. To factor an input module, the transform in the data flow diagram that
produced the data item is now treated as a central transform. The process performed
for the first-level factoring is repeated here with this new central transform, with the
input module being considered the main module. A subordinate input module is created
for each input data stream coming into this new central transform, and a subordinate
transform module is created for the new central transform. The new input modules now
created can then be factored again, until the physical inputs are reached. Factoring of
input modules will usually not yield any output subordinate modules.

The factoring of the input module get-sorted-list in the first-level structure is shown
in Figure 6.8. The transform producing the input returned by this module (i.e., the sort
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Figure 6.8: Factoriug the input module.

transform) is treated as a central transform. Its input is the word list. Thus, in the
first factoring we have an input module to get the list and a transform module to sort
the list. The input module can be factored further, as the module needs to perform two
functions, getting a word and then adding it to the list. Note that the looping arrow is
used to show the iteration.

The factoring of the output modules is symmetrical to the factoring of the input
modules. For an output module we look at the next transform to be applied to the
output to bring it closer to the ultimate desired output. This now becomes the central
transform, and an output module is created for each data stream going out of this
transform. During the factoring of output modules, there will usually be no input
modules. In our example, there is only one transform after the most abstract output,
so this factoring need not be done.

If the data flow diagram of the problem is sufficiently detailed, factoring of the input
and output modules is straightforward. However, there are no such rules for factoring the
central transforms. The goal is to determine subtransforms that will together compose
the overall transform and then repeat the process for the newly found transforms, until
we reach the atomic modules. Factoring the central transform is essentially an exercise
in functional decomposition and will depend on the designers’ experience and Jjudgment.

One way to factor a transform module is to treat it as a problem in its own right and
start with a data flow diagram for it. The inputs to the data flow diagram are the data
coming into the module and the outputs are the data being returned by the module.
Each transform in this data flow diagram represents a subtransform of this transform.
The central transform can be factored by creating a subordinate transform module for
each of the transforms in this data flow diagram. This process can be repeated for the
new transform modules that are created, until we reach atomic modules. The factoring
of the central transform count-the-number-of-different-words is shown in Figure 6.9.
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This was a relatively simple transform, and we did not need to draw the data flow
diagram. To determine the number of words, we have to get a word repeatedly, deter-
mine if it is the same as the previous word (for a sorted list, this checking is sufficient
to determine if the word is different from other words), and then count the word if it is
different. For each of the three different functions, we have a subordinate module, and
we get the structure shown in Figure 6.9.

It should be clear that the structure that is obtained depends a good deal on what
are the most abstract inputs and most abstract outputs. And as mentioned earlier, de-
termining the most abstract inputs and outputs requires making a judgment. However,
if the judgment is different, though the structure changes, it is not affected dramati-
cally. The net effect is that a bubble that appears as a transform module at one level
may appear as a transform module at another level. For example, suppose in the word-
counting problem we make a judgment that word-list is another form of the basic input
but sorted-word-list is not. If we use word-list as the most abstract input, the net result
is that the transform module corresponding to the sort bubble shows up as a transform
module one level above. That is, now it is a central transform (i.e., subordinate to the
main module) rather than a subordinate to the input module “get-sorted-word-list.”
So, the SDM has the desired property that it is not very sensitive to some variations in
the identification of the most abstract input and most abstract output.

6..1.5  Design Heuristies

The design steps mentioned earlier do not reduce the design process to a series of
steps that can be followed blindly. The strategy requires the designer to exercise sound
judgment and common sense. The basic objective is to make the program structure
reflect the problem as closely as possible. With this in mind the structure obtained
by the methodology described earlier should be treated as an initial structure, which
may need to be modified. Here we mention some heuristics that can be used to modify
the structure, if necessary. Keep in mind that these are merely pointers to help the
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designer decide how the structure can be modified. The designer is still the final judge
of whether a particular heuristic is useful for a particular application or not.

Module size is often considered an indication of module complexity. In terms of the
structure of the system, modules that are very large may not be implementing a single
function and can therefore be broken into many modules, each implementing a different
function. On the other hand, modules that are too small may not require any additional
identity and can be combined with other modules.

However, the decision to split a module or combine different modules should not
be based on size alone. Cohesion and coupling of modules should be the primary
guiding factors. A module should be split into separate modules only if the cohesion
of the original module was low, the resulting modules have a higher degree of cohesion,
and the coupling between modules does not increase. Similarly, two or more modules
should be combined only if the resulting module has a high degree of cohesion and the
coupling of the resulting module is not greater than the coupling of the submodules.
Furthermore, a module usually should not be split or combined with another module if
it is subordinate to many different modules. As a rule of thumb, the designer should
take a hard look at modules that will be larger than about 100 lines of source code or
will be less than a couple of lines.

Another parameter that can be considered while “fine-tuning” the structure is the
fan-in and fan-out of modules. Fan-in of a module is the number of arrows coming in
the module, indicating the number of superordinates of a module. Fan-out of a module
is the number of arrows going out of that module, indicating the number of subordinates
of the module. A very high fan-out is not very desirable, as it means that the module
has to control and coordinate too many modules and may therefore be too complex.
Fan-out can be reduced by creating a subordinate and making many of the current
subordinates subordinate to the newly created module. In general the fan-out should
not be increased above five or six.

Whenever possible, the fan-in should be maximized. Of course, this should not be
obtained at the cost of increasing the coupling or decreasing the cohesion of modules.
For example, implementing different functions into a single module, simply to increase
the fan-in, is not a good idea. Fan-in can often be increased by separating out common
functions from different modules and creating a module to implement that function.

Another important factor that should be considered is the correlation of the scope
of effect and scope of control. The scope of effect of a decision (in a module) is the
collection of all the modules that contain any processing that is conditional on that
decision or whose invocation is dependent on the outcome of the decision. The scope of
control of a module is the module itself and all its subordinates (not just the immediate
subordinates). The system is usually simpler when the scope of effect of a decision is
a subset of the scope of control of the module in which the decision is located. Ideally,
the scope of effect should be limited to the modules that are immediate subordinates
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of the module in which the decision is located. Violation of this rule of thumb often
results in more coupling between modules.

There are some methods that a designer can use to ensure that the scope of effect
of a decision is within the scope of control of the module. The decision can be removed
from the module and “moved up” in the structure. Alternatively, modules that are in
the scope of effect but are not in the scope of control can be moved down the hierarchy
so that they fall within the scope of control.

6.1.6  Transaction Analyvsis

The structured design technique discussed earlier is called transform analysis, where
most of the transforms in the data flow diagram have a few inputs and a few outputs.
There are situations where a transform splits an input stream into many different sub-
streams, with a different sequence of transforms specified for the different substreams.
For example, this is the case with systems where there are many different sets of possible
actions and the actions to be performed depend on the input command specified. In
such situations the transform analysis can be supplemented by transaction analysis.
and the detailed data flow diagram of the transform splitting the input may look like
the DFD shown in Figure 6.10.

Transaction
Center

Ficure 6.10: DEFD [or transacrion analvsis,

The module splitting the input is called the transaction center; it need not be a
central transform and may occur on either the input branch or the output branch of
the data flow diagram of the system. One of the standard ways to convert a data
flow diagram of the form shown in Figure 6.10 into a structure chart is to have an
input module that gets the analyzed transaction and a dispatch module that invokes
the modules for the different transactions. This structure is shown in Figure 6.11.

For smaller systems the analysis and the dispatching can be done in the transaction
center module itself, giving rise to a flatter structure. For designing systems that re-
quire transaction analysis, start with a data flow diagram, as in transform analysis, and
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identify the transform centers. Factor the data flow diagram, as is done in transform
analysis. For the modules corresponding to the transform centers, draw the detailed
data flow diagram, which will be of the form shown in Figure 6.11. Choose one of the
transaction-centered organizations, either one with a separate dispatch and input mod-
ule or one with all combined in one module. Specify one subordinate module for each
transaction. Temptations to combine many similar transactions into one module should
be avoided, as it would result in a logically cohesive module. Then each transaction
module should be factored, as is done in transform analysis. There are usually many
distinct actions that need to be performed for a transaction; they are often specified
in the requirements for each transaction. In such cases one subordinate module to the
transaction module should be created for each action. Further factoring of action mod-
ules into many detailed action modules may be needed. In many transaction-oriented
systems, there is a lot of commonality of actions among the different transactions. This
commonality should be exploited by sharing the modules at either the action level or
the detailed action level.

6.4.7 Discussion

No design methodology reduces design to a series of steps that can be mechanically
executed. All design methodologies are, at best, a set of guidelines that, if applied, will
most likely give a design that will satisfy the design objectives. The basic objective is to
produce a design that is modular and simple. One way to achieve modularity is to have
a design that has highly cohesive modules with low coupling between different modules.
In other words, the basic objective of the design activity using a function-oriented
approach is to create an architecture, that, if implemented, will satisfy the SRS, and
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that contains cohesive modules that have low coupling with others. Structured design
methodology is an approach for creating a design that is likely to satisfy this objective.
Now that we have studied the methodology, let us see how it actually achieves this goal.

The basic principle behind the SDM, as with most other methodologies, is problem
partitioning, in which the problem is partitioned into subproblems that can be solved
separately. In SDM, at the very basic level, this is done by partitioning the system into
subsystems that deal with input, subsystems that deal with output, and subsystems
that deal with data transformation.

The rationale behind this partitioning is that in many systems, particularly data
processing systems, a good part of the system code deals with managing the inputs
and outputs. The components dealing with inputs have to deal with issues of screens,
reading data, formats, errors, exceptions, completeness of information, structure of the
information, etc. Similarly, the modules dealing with output have to prepare the output
in presentation formats, make charts, produce reports, etc. Hence, for many systems, it
is indeed the case that a good part of the software has to deal with inputs and outputs.
The actual transformation in the system is frequently not very complex—it is dealing
with data and getting it in proper form for performing the transformation or producing
the output in the desired form that requires considerable processing.

Structured design methodology clearly separates the system at the very top level
into various subsystems, one for managing each major input, one for managing each
major output, and one for each major transformation. The modules performing the
transformation deal with data at an abstract level, that is, in the form that is most con-
venient for processing. Due to this, these modules can focus on the conceptual problem
of how to perform the transformation without bothering with how to obtain “clean”
inputs or how to “present” the output. And these subsystems are quite independent of
each other, interacting only through the main module. Hence, this partitioning leads to
independent subsystems that do not interact directly, and hence can be designed and
developed separately.

This partitioning is at the heart of SDM. In the SDM itself, this partitioning is
obtained by starting with a data flow diagram. However, the basic idea of the SDM can
be effectively used even if one wants to go directly to the first structure (without going
through a DFD).

Besides this central idea, another basic idea behind the SDM is that processing of an
input subsystem should be done in a progressive manner, starting from the raw input
and progressively applying transformations to eventually reach the most abstract input
level (what this input subsystem has to produce). Similar is the case with the structure
for the subsystems dealing with outputs. The basic idea here is to separate the different
transformations performed on the input before it is in a form ready to be “consumed.”
And if the SDM is followed carefully, this leads to a “thin and tall” tree as a structure
for the input or output subsystem. For example, if an input goes through a series of
bubbles in the DFD before it is considered most abstract, the structure for this will be a
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tree with each node having two subordinates—one obtaining the input data at its level
of abstraction and the other a transform module that is used to transform the data to
the next abstract level (which is passed to the superordinate). Similar effect can also
be obtained by the main input module having one input module and then a series of
transform modules, each performing one transform. In other words, the basic idea in
SDM for processing an input is to partition the processing of an input into a series of
transforms. As long as this approach is followed, it is not terribly important how the
structure for the input subsystem is obtained.

These ideas that the methodology uses to partition the problem into smaller modules
lead to a structure in which different modules can be solved separately and the connec-
tions between modules are minimized (i.e., the coupling is reduced)—most connections
between modules go through some coordinate modules. These ideas of structuring are
sound and lead to a modular structure. It is important that these fundamental ideas
behind the SDM be kept in mind when using this approach. It may not be so important
to follow SDM down to the smallest detail. This is how experienced designers use most
methodologies; the detailed steps of the methodology are not necessarily followed, but
the philosophy is. Many experienced designers do not start with a detailed DFD when
using the SDM; they prefer to work directly with the structure or with a very high-level
DFD. But they do use these principles when creating the structure. Such an approach
is recommended only when one has some experience with the SDM.

6.5 Verification

The output of the system design phase, like the output of other phases in the develop-
ment process, should be verified before proceeding with the activities of the next phase.
If the design is expressed in some formal notation for which analysis tools are available,
then through tools it can be checked for internal consistency (e.g., those modules used
by another are defined, the interface of a module is consistent with the way others use
it, data usage is consistent with declaration, etc.) If the design is not specified in a
formal, executable language, it cannot be processed through tools, and other means
for verification have to be used. The most common approsach for verification is design
review or inspections. We discuss this approach here.

The purpose of design reviews is to ensure that the design satisfies the requirements
and is of “good quality.” If errors are made during the design process, they will ul-
timately reflect themselves in the code and the final system. As the cost of removing
faults caused by errors that occur during design increases with the delay in detecting
the errors, it is best if design errors are detected early, before they manifest themselves
in the system. Detecting errors in design is the purpose of design reviews.

The system design review process is similar to the inspection process, in that a group
of people get together to discuss the design with the aim of revealing design errors or
undesirable properties. The review group must include a member of both the system



6.5. VERIFICATION 245

design team and the detailed design team, the author of the requirements document, the
author responsible for maintaining the design document, and an independent software
quality engineer. As with any review, it should be kept in mind that the aim of the
meeting is to uncover design errors not to try to fix them; fixing is done later.

The number of ways in which errors can come in a design is limited only by the
creativity of the designer. However, there are some forms of errors that are more often
observed. Here we mention some of these [52]. Perhaps the most significant design
error is omission or misinterpretation of specified requirements. Clearly, if the system
designer has misinterpreted or not accounted for some requirement it will be reflected
later as a fault in the system. Sometimes, this design error is caused by ambiguities in
the requirements.

There are some other quality factors that are not strictly design errors but that have
implications on the reliability and maintainability of the system. An example of this
is weak modularity (that is, weak cohesion and/or strong coupling). During reviews,
elements of design that are not conducive to modification and expansion or elements
that fail to conform to design standards should also be considered “errors.”

A Sample Checklist: The use of checklists can be extremely useful for any review.
The checklist can be used by each member during private study of the design and during
the review meeting. For best results the checklist should be tailored to the project at
hand, to uncover problem-specific errors. Here we list a few general items that can be
used to construct a checklist for a design review [52]:
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6.6 Metries

We have already seen that the basic purpose of metrics is to provide quantitative data
to help monitor the project. Here we discuss some of the metrics that can be extracted
from a design and that could be useful for evaluating the design. We do not discuss
the standard metrics of effort or defect that are collected (as per the project plan) for
project monitoring.

Size is always a product metric of interest, as size is the single most influential factor
deciding the cost of the project. As the actual size of the project is known only when the
project ends, at early stages the project size is only an estimate. As we saw in Figure
5.1, our ability to estimate size becomes more accurate as development proceeds. Hence,
after design, size (and cost) re-estimation are typically done by project management.
After design, as all the modules in the system and major data structures are known,
the size of the final system can be estimated quite accurately.

For estimating the size, the total number of modules is an important metric. This
can be easily obtained from the design. By using an average size of a module, from this
metric the final size in LOC can be estimated. Alternatively, the size of each module
can be estimated, and then the total size of the system will be estimated as the sum of
all the estimates. As a module is a small, clearly specified programming unit, estimating
the size of a module is relatively easy.

Another metric of interest is complexity, as one of our goals is to strive for simplicity
and ease of understanding. A possible use of complexity metrics at design time is to
improve the design by reducing the complexity of the modules that have been found
to be most complex. This will directly improve the testability and maintainability. If
the complexity cannot be reduced because it is inherent in the problem, complexity
metrics can be used to highlight the more complex modules. As complex modules are
often more error-prone, this feedback can be used by project management to ensure
that strict quality assurance is performed on these modules as they evolve. Overall,
complexity metrics are of great interest at design time and they can be used to evaluate
the quality of design, improve the design, and improve quality assurance of the project.
We will describe some of the metrics that have been proposed to quantify the complexity
of design.

Lo Network Maotries

Network metrics for design focus on the structure chart (mostly the call graph compo-
nent of the structure chart) and define some metrics of how “good” the structure or
network is in an effort to quantify the complexity of the call graph. As coupling of a
module increases if it is called by more modules, a good structure is considered one
that has exactly one caller. That is, the call graph structure is simplest if it is a pure
tree. The more the structure chart deviates from a tree, the more complex the system.
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Deviation of the tree is then defined as the graph impurity of the design [153]. Graph
impurity can be defined as

Ciraph impurity = n - ¢ -1

where 7 is the number of nodes in the structure chart and e is the number of edges.
As in a pure tree the total number of nodes is one more than the number of edges, the
graph impurity for a tree is 0. Each time a module has a fan-in of more than one, the
graph impurity increases. The major drawback of this approach is that it ignores the
common use of some routines like library or support routines. An approach to handle
this is not to consider the lowest-level nodes for graph impurity because most often the
lowest-level modules are the ones that are used by many different modules, particularly
if the structure chart was factored. Library routines are also at the lowest level of the
structure chart (even if they have a structure of their own, it does not show in the
structure chart of the application using the routine).

Other network metrics have also been defined. For most of these metrics, significant
correlations with properties of interest have not been established. Hence, their use is
limited to getting some idea about the structure of the design.

6.6.2  Stability Netries

We know that maintainability of software is a highly desired quality attribute. Main-
tenance activity is hard and error-prone as changes in one module require changes in
other modules to maintain consistency, which require further changes, and so on. It is
clearly desirable to minimize this ripple effect of performing a change, which is largely
determined by the structure of the software. Stability of a design is a metric that tries
to quantify the resistance of a design to the potential ripple effects that are caused by
changes in modules [151]. The higher the stability of a program design, the better the
maintainability of the program. Here we define the stability metric as defined in [151].

At the lowest level, stability is defined for a module. From this, the stability of
the whole system design can be obtained. The aim is to define a measure so that the
higher the measure the less the ripple effect on other modules that in some way are
related to this module. The modules that can be affected by change in a module are the
modules that invoke the module or share global data (or files) with the module. Any
other module will clearly not be affected by change in a module. The potential ripple
effect is defined as the total number of assumptions made by other modules regarding
the module being changed. Hence, counting the number of assumptions made by other
modules is central to determining the stability of a module.

As at design time only the interfaces of modules are known and not their internals,
for calculating design stability only the assumptions made about the interfaces need be
considered. The interface of a module consists of all elements through which this module
can be affected by other modules, i.e., through which this module can be coupled with
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other modules. Hence, it consists of the parameters of the modules and the global data
the module uses. Once the interface is identified, the structure of each element of the
interface is examined to determine all the minimal entities in this element for which
assumptions can be made. The minimal entities generally are the constituents of the
interface element. For example, a record is broken into its respective fields as a calling
module can make assumptions about a particular field.

For each minimal entity at least two categories of assumptions can be made—about
the type of the entity and about the value of the entity. (The assumption about the type
is typically checked by a compiler if the programming language supports strong typing.)
Each minimal entity in the interface is considered as contributing one assumption in
each category. A structured type is considered as contributing one more assumption
about its structure in addition to the assumptions its minimal elements contribute. The
procedure for determining the stability of a module z and the stability of the program
can be broken into a series of steps [151]:

Step 1: From the design, analyze the module x and all the modules that call z or
share some file or data structure with z, and obtain the following sets.
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Note that determining GR, and GD, is not always possible when pointers and indirect
referencing are used. In that case, a conservative estimate is to be used. From these,
for each global data item i, define the set G; as

The set G; represents the set of modules where the global data 3 is either referenced
or defined. Where it is not possible to compute G accurately, the worst case should be
taken.

Step 2: For each module z, determine the number of assumptions made by a caller
module y about elements in R, (parameters returned from module = to y) through
these steps:

i Indtialize asswmption connt 1o U,
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Let T P,, represent the total number of assumptions made by a module y about param-
eters in Rgy.

Step 3: Determine TP;y,
called by the module z about elements in R;y (parameters passed from module z to y).
The method for computation is the same as in the previous step.

Step 4: For each data element i € GD, (i.e., the global data elements modified
by the module x), determine the total number of assumptions made by other modules
about i. These will be the modules other than z that use or modify ¢, i.e., the set of
modules to be considered is {G; — {z}}. The counting method of step 2 is used. Let
TG, be the total number of assumptions made by other modules about the elements in
GD,.

Step 5: For a module z, the design logical ripple effect (DLRE) is defined as:

the total number of assumptions made by a module y

N RE i N ONT o

'

DLRE, is the total number of assumptions made by other modules that interact with
z through either parameters or global data. The design stability (DS) of a module z is
then defined as

v, LR

Step 6: The program design stability (PDS) is computed as

By following this sequence of steps, the design stability of each module and the overall
program can be computed. The stability metric, in a sense, is trying to capture the
notion of coupling of a module with other modules. The stability metrics can be used
to compare alternative designs—the larger the stability, the more maintainable the
program. It can also be used to identify modules that are not very stable and that
are highly coupled with other modules with a potential of high ripple effect. Changes
to these modules will not be easy, hence a redesign can be considered to enhance the
stability. Only a limited validation has been done for this metric. Some validation
has been given in [151], showing that if programming practices are followed which are
generally recognized as enhancing maintainability, then higher program stability results.
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Another stability metric was described in [121]. In this formulation, the effect of
a change in a module 7 on another module j is represented as a probability. For the
entire system, the effect of change is captured by the probability of change metrics C.
An element C[i, j] of the matrix represents the probability that a change in module 7
will result in a change in module j. With this matrix the ripple effect of a change in
a module can also be easily computed. This can then be used to model the stability
of the system. The main problem with this metric is to estimate the elements of the
matrix.

6.6.3  Information Flow Metries

The network metrics of graph impurity had the basis that as the graph impurity in-
creases, the coupling increases. However, it is not a very good approximation for cou-
pling, as coupling of a module increases with the complexity of the interface and the
total number of modules a module is coupled with, whether it is the caller or the callee.
So, if we want a metric that is better at quantifying coupling between modules, it should
handle these. The information flow metrics attempt to define the complexity in terms
of the total information flowing through a module.

In one of the earliest work on information flow metrics [84, 85], the complexity of a
module is considered as depending on the intramodule complexity and the intermodule
complexity. The intramodule complexity is approximated by the size of the module in
lines of code (which is actually the estimated size at design time). The intermodule
complexity of a module depends on the total information flowing in the module (inflow)
and the total information flowing out of the module (outflow). The inflow of a module
is the total number of abstract data elements flowing in the module (i.e., whose values
are used by the module), and the outflow is the total number of abstract data elements
that are flowing out of the module {i.e., whose values are defined by this module and
used by other modules). The module design complexity, D, is defined as

The term (in flow * out flow) refers to the total number of combinations of input source
and output destination. This term is squared, as the interconnection between the mod-
ules is considered a more important factor (compared to the internal complexity) de-
termining the complexity of a module. This is ‘based on the common experience that
the modules with more interconnections are harder to test or modify compared to other
similar-size modules with fewer interconnections.

The metric defined earlier defines the complexity of a module purely in terms of the
total amount of data flowing in and out of the module and the module size. A variant
of this was proposed based on the hypothesis that the module complexity depends not
only on the information flowing in and out, but also on the number of modules to or



